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The quantum kicked particle in a magnetic field is studied in a weak-chaos regime under realistic conditions,
i.e., for general values of the conserved coordinate xc of the cyclotron orbit center. The system exhibits spectral
structures �“Hofstadter butterflies” �HBs�� and quantum diffusion depending sensitively on xc. Most significant
changes take place when xc approaches the value at which quantum antiresonance �exactly periodic recur-
rences� can occur: the HB essentially “doubles” and the quantum-diffusion coefficient D�xc� is strongly re-
duced. An explanation of these phenomena, including an approximate formula for D�xc� in a class of wave
packets, is given on the basis of an effective Hamiltonian which is derived as a power expansion in a small
parameter. The global quantum diffusion of a two-dimensional wave packet for all xc is briefly considered.
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I. INTRODUCTION

Simple quantum systems whose classical counterparts are
nonintegrable exhibit a variety of remarkable phenomena �1�
which continue to attract much interest in several contexts. A
realistic system, whose experimental realization by different
methods has been the object of many recent works �see a
very partial list in Ref. �2��, is the well-known kicked rotor
�1,3,4�, modeling the dynamical-localization phenomenon. A
class of systems exhibiting basically different phenomena,
such as quantum diffusion associated with a fractal spectrum,
are represented by Hamiltonians periodic in phase space
�5–20�. The simplest such system is the integrable Harper
model �5� with Hamiltonian H=cos�x�+cos�p�, whose quan-
tization describes the energy spectrum within a Bloch band
in a magnetic field or within a broadened Landau level in a
crystalline periodic potential �5–7,10�. Plotting this spectrum
as a function of the magnetic flux through a unit cell �this
flux is related to a scaled Planck constant for the Harper
model� gives the well-known “Hofstadter butterfly” �6�, fea-
turing a clearly fractal structure �9�. Quite recently �10�,
much of this structure was detected experimentally.

The simplest nonintegrable system with a mixed phase
space and a periodic Hamiltonian is the kicked Harper model
�KHM� �11–19� with H=cos�p�+cos�x��s=−�

� ��t /T−s�,
which reduces to the Harper Hamiltonian when the time pe-
riod T→0. The KHM models the regular-chaotic transition
�11,19� as well as the effect of chaos on a fractal spectrum
and on quantum diffusion �13�. It seems that the only realis-
tic interpretation of the KHM is its exact relation �16� with a
particular case of the two-dimensional �2D� system of the
periodically kicked particle in a magnetic field �21–23�. This
system is described by

H = �2/2 − K cos�x� �
s=−�

�

��t − sT� , �1�

where �= ��x ,�y�=p−B�r / �2c� is the kinetic momentum
of a particle with unit charge and unit mass in a uniform

magnetic field B �along the z axis� and K is a nonintegrabil-
ity parameter. Let us first summarize some known facts
about �1� �21–23�. It is crucial to represent �1� in the natural
degrees of freedom in a magnetic field, given by the inde-
pendent conjugate pairs ��x ,�y� and �xc ,yc� �coordinates of
the center of a cyclotron orbit� �24�. Defining u=�x /�, v
=�y /�, where �=B /c is the cyclotron frequency, and using
the relation xc=x+�y /�=x+v �from simple geometry�, �1�
can be rewritten as follows �22�:

H = �2�u2 + v2�/2 − K cos�xc − v� �
s=−�

�

��t − sT� . �2�

Since yc does not appear in �2�, its conjugate mate xc is
conserved and, therefore, can be treated as a parameter. This
reduces �1� to an ensemble of periodically kicked harmonic
oscillators parametrized by xc. Classically, these degenerate
systems are expected to exhibit unbounded chaotic diffusion
in the �u ,v� phase plane for arbitrarily small values of K,
especially under resonance conditions, with ���T a ratio-
nal multiple of 2� �21,22�; this diffusion is observed to take
place on a “stochastic web” whose symmetry depends on �.
Examples of square-symmetry webs ��=� /2� are shown in
Fig. 1. The KHM is exactly related to �2�, in essence, only
for �=� /2 and for very special values of xc, xc=0, � �see
Sec. A 1 of the Appendix and generalizations of this relation
in Refs. �15,16��. Now, the classical properties of �2�, in
particular the structure of the stochastic web, its width, and

FIG. 1. Classical stochastic webs for K=0.157 and �=� /2, gen-
erated by the map �8� in three cases: �a� xc=0; �b� xc=1.47; �c� xc

=� /2. The range of both u and v in all the plots is �−2� ,2��.
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�the diffusion rate on it, are known to depend strongly on xc
�22,23� �see also Sec. III�. In addition, one should notice that
realistic classical ensembles or 2D wave packets for �1� ex-
hibit all values of xc. These facts motivate the investigation
of the quantum properties of �2� for arbitrary xc. Except for
general results �15,16�, these properties appear to be essen-
tially unexplored.

In this paper, we present a study of the quantized system
�2� for general xc. We focus on the weak-chaos regime of
small K and, as in the classical studies �22,23�, on the case of
�=� /2. The global spectral features of the system at fixed xc
are exhibited by a suitably defined plot of the quasienergy
spectrum as a function of a scaled Planck constant 	. The
term Hofstadter butterfly �HB� is extended so as to refer to
such a plot. The quantum properties are found to depend
sensitively on xc. Most significant changes take place when
xc approaches the value of � /2 at which quantum antireso-
nance �QAR�, i.e., exactly periodic recurrences �15,25�, oc-
curs for integer 	 / �2��. While the HB for most values of xc

is approximately the standard one of the Harper model �6�,
the HB for xc=� /2 is, up to a local scaling, a perturbed
“doubled” version of the standard HB. This change of the
HB structure in the “QAR transition” xc→� /2 is explained
on the basis of an effective Hamiltonian which is derived as
a power expansion in a small parameter. For irrational
	 / �2��, the time evolution of wave packets is observed to
exhibit approximately an asymptotic quantum diffusion. This
is characterized by either a diffusion coefficient D�xc� at

fixed xc or a global coefficient D̄, given by a weighted aver-
age of D�xc� over xc. An approximate formula for D�xc� in a
simple class of wave packets is derived from the effective
Hamiltonian and is verified numerically. As xc→� /2, D�xc�
decreases and QAR is manifested by the fact that D�� /2� is
significantly smaller than typical values of D�xc�. While
these phenomena are of a purely quantum nature, they have
classical analogs. The paper is organized as follows. In Sec.
II, we recall the QAR phenomenon �15,25� and study general
spectral properties of the system �2�, also on the basis of an
effective Hamiltonian which is derived as an expansion in a
small parameter. In Sec. III, we consider classical limits and
analogs of some of the results in Sec. II. In Sec. IV, we study
the quantum diffusion of wave packets for general xc, using
also the effective-Hamiltonian approximation. A summary
and conclusions are presented in Sec. V. Proofs of several
statements in Secs. I, II, and IV are given in the Appendix.

II. QUANTUM ANTIRESONANCE, GENERAL SPECTRAL
PROPERTIES, AND EFFECTIVE HAMILTONIAN

To quantize the system �2�, �u ,v� are replaced by the cor-
responding conjugate operators �û , v̂�. From the definitions
u=�x /�, v=�y /�, where ��x ,�y�=p−B�r / �2c� and �
=B /c, it is easy to see that �û , v̂� satisfy �û , v̂�= i	 /�. We
choose units such that �=1, so that �û , v̂�= i	, where 	 is a
scaled Planck constant. The one-period evolution operator

for the quantized system �2� will be denoted by ÛT�xc�. Let
us now recall the phenomenon of quantum antiresonance
�QAR� �15�. Under classical resonance conditions, �=�T

=2�j / l �j and l are coprime integers�, QAR for the system

�2� is defined by ÛT
l �xc�=constant phase factor, i.e., exactly

periodic recurrences with the natural resonance period lT. As
shown in Ref. �15�, QAR occurs in the nonintegrable �l

2� case of a general kicked harmonic oscillator only if
three conditions are satisfied: �a� The kicking periodic poten-
tial is an odd function, up to an additive constant; this im-
plies that xc=� /2, 3� /2 for the potential cos�xc−v� in Eq.
�2�. �b� l=4 or l=6, corresponding to stochastic webs with
square or hexagonal symmetry, respectively. �c� 	 / �2�� is
integer for l=4 while �3	 / �4�� is integer for l=6. When all
these conditions hold, it follows from the results in Ref. �15�
that ÛT

l �xc�=−1 for xc=� /2, 3� /2 and l=4, 6. In this paper,
only the case of l=4 with j / l= 1

4 ��=� /2� will be consid-
ered. Using general results �15�, one finds that the evolution

operator ÛT
4�xc� in this case is equal to −Û�xc�, where

Û�xc� = exp�i� cos�xc − û��exp�i� cos�xc + v̂��

�exp�i� cos�xc + û��exp�i� cos�xc − v̂�� �3�

and �=K /	. We show in the Appendix �Sec. A 1� that the
range of xc in Eq. �3� can be restricted to �0,� /2� without
loss of generality. Thus, only the QAR point xc=� /2 will be

considered; Û�� /2�=1 for integer 	 / �2��.
We now extend the notion of HB �6� to the operator �3�.

Let us denote by E and �, respectively, the quasienergies

�QEs� and QE eigenstates, defined by Û�xc��=exp�
−i�E��, with E lying in the interval �−� /� ,� /��. We then
define the HB as the plot of the QE spectrum E�	� as a
function of 	, for 0	2�, at fixed �. Such a plot was
introduced in Ref. �13� for the KHM and is motivated by the
fact, shown in the Appendix �Sec. A 2�, that E�	� is
2�-periodic in 	 at fixed �. A small value of � characterizes
a HB associated with a “semiclassical weak-chaos regime,”
i.e., a regime of small K=	� for all small values of 	, 	
�1. We also show in the Appendix �Sec. A 2� that: �a� For
rational 	 / �2��=q / p �q and p are coprime integers�, the QE
spectrum consists of p bands, each q-fold degenerate. �b�
The HB has reflection symmetry around 	=� �i.e., E�2�
−	�=E�	�� only if xc=0 or xc=� /2. Examples of HBs, plot-
ted for all 	=2�q / p with 1q p50, are shown in Fig. 2
for three values of xc. We see that for xc=� /2 �Fig. 2�c�� the
QE spectrum E→0 as 	→2� or 	→0, reflecting the QAR

phenomenon, Û�� /2�=1 for 	=2�.
The unitary operator �3� can be formally written as

Û�xc�=exp�−i�Ĥeff�xc��, where Ĥeff�xc� is an effective
Hamiltonian for the problem. Clearly, if E� is the “energy”

spectrum of Ĥeff�xc�, the QE spectrum E is just E� modulo
the interval �−� /� ,� /��. Thus, the “unfolded” HB is the
spectrum E� plotted as a function of 	 �0	2�� at fixed
�. The dependence of some general HB features on xc can be

understood on the basis of an expression for Ĥeff�xc� which
we now derive. We first note that the arguments of the expo-
nents in Eq. �3� involve simple operators exp�±iû� and
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exp�±iv̂�, giving just translations by ±	 in the �u ,v� phase
plane. Using then the known formula �26�

exp�A�exp�B� = exp�A + B +
1

2
�A,B� +

1

12
†A,�A,B�‡

+
1

12
†�A,B�,B‡ + ¯	 , �4�

valid for arbitrary operators A and B, one can verify by te-

dious but straightforward algebra that Ĥeff�xc� can be ex-
pressed as a power expansion in a parameter �,

Ĥeff�xc� = �
r=0

�

�rĤr�xc�, � = � sin�	/2� =
K

2

sin�	/2�
	/2

.

�5�

The zero-order coefficient in Eq. �5� is

Ĥ0�xc� = − 2 cos�xc��cos�û� + cos�v̂�� . �6�

The operator �6� is a Harper Hamiltonian and if � is suffi-
ciently small, 2
cos�xc� /�
�1, is the dominant term in the
expansion �5� for most values of xc. For general � ,� is small
provided 	 / �2�� is sufficiently close to an integer. In a
weak-chaos �small � or K� regime, on which we shall focus,
� is globally small for all 	. Then, for 2
cos�xc� /�
�1, the
HB is essentially the standard one for the Harper model �6�,
see Fig. 2�a�. For 2
cos�xc� /�
�1, higher-order coefficients
in Eq. �5� become significant, especially for 	�� �largest �

at fixed ��, leading to a clearly nonstandard HB with a vis-
ible reflection-symmetry breaking; see Fig. 2�b�.

For xc=� /2, Ĥ0 vanishes. If also 	 / �2�� is integer, �=0

and thus Ĥeff=0, implying Û�� /2�=1 �QAR�. Small values
of � for xc=� /2 define a QAR vicinity; thus, a weak-chaos
regime at xc=� /2 corresponds to a QAR vicinity for arbi-

trary 	. Now, Ĥeff�� /2�=�Ĥ1+�2Ĥ2+¯, and we find that

Ĥ1��/2� = − �cos�û + v̂� + cos�û − v̂�� . �7�

Since the operators û�= û+ v̂ and v̂�= v̂− û are clearly conju-

gate, �û� , v̂��= i	� with 	�=2	, we see that Ĥ1 in Eq. �7� is
again a Harper Hamiltonian. When 	 varies from 0 to 2�,

	�=2	 varies from 0 to 4�. Then, the HB for Ĥeff /�= Ĥ1

+�Ĥ2+¯ is a perturbed doubled version of the standard HB,
see Fig. 3. A simple measure of the perturbation of this HB is
P= 
1−�E���� /�E��2��
, where �E��	� is the width of

the spectrum of Ĥeff /�. The exact result P=1
−�−2 arcsin�sin2����=�2 /3+¯ is easily derived �see note
�27��. As 	 approaches its QAR value of 2� �or 0 at fixed ��,
the width �E�	��� sin�	 /2��E��2�� of the QE spectrum
vanishes almost linearly in 	, see Fig. 2�c�.

A simple consequence of the approximately doubled

structure of the HB for Ĥeff�� /2� /� is that if 	=2�q / p and p
is even, p=2p�, the p bands in this HB actually form p� pairs
of overlapping bands. This is because the spectrum of the
Harper Hamiltonian �7� for 	�=2	=2�q / p� always consists
of p� nonoverlapping bands �6�. Each such band must then

correspond to a pair of overlapping bands of Ĥeff for suffi-
ciently small �. Thus, the number of gaps in the spectrum for
even p is more than halved when xc is varied from 0 to � /2.

III. CLASSICAL LIMITS AND ANALOGS

In this section, we consider classical limits and analogs of
some of the results above. The classical one-period map for
the system �2� in the case of �=� /2 is �22�

FIG. 2. HBs E�	� for �=0.5 and �a� xc=0, −4E4; �b� xc

=1.47, −1E1; �c� xc=� /2, −1E1.

FIG. 3. Perturbed double HB E��	� �−2E�2�, obtained by
locally scaling the HB in Fig. 2�c� by �−1= �� sin�	 /2��−1. The per-
turbation is reflected by the fact that the spectral width �E���� �at
the HB center� is slightly smaller than the maximal width
�E��2��=4.
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M: us+1 = vs, vs+1 = − us + K sin�xc − vs� . �8�

The fourth iterate M4 of M is the classical map correspond-

ing to the evolution operator Û�xc� in Eq. �3�. One can easily
show that M4 is a near-identity map for small K �23�, i.e.,
ut+1=ut+O�K�, vt+1=vt+O�K�, where t denotes now an inte-
ger time index counting iterations of M4. It is then clear from

the expression Û�xc�=exp�−iKĤeff�xc� /	� that the classical

limit �	→0, �→K /2� of Ĥeff�xc� is an integrable Hamil-
tonian Heff�u ,v ;xc� generating, in a continuous time denoted
here by t�, a phase-space flow which approximates the near-
integrable map M4 at times t�=Kt:

�Heff

�v
=

du

dt�
�

ut+1 − ut

K
, −

�Heff

�u
=

dv
dt�

�
vt+1 − vt

K
.

�9�

Expressions for KHeff /4 as power expansions in K are given

in Ref. �23�. Like Û�xc� , M4 and Heff�u ,v ;xc� are generally
periodic in the phase space �u ,v� with a unit cell of area 4�2,
so that the orbit structure of M4 or the flow �9� feature the
same periodicity, as is clearly shown in Figs. 1�a� and 1�b�.
For xc=� /2, however, the dominant term in Heff�u ,v ;� /2�
is the classical analog H1 of �7�, which is periodic with a unit
cell of area 2�2, half the size of the usual unit cell; this
periodicity is then approximately exhibited by the corre-
sponding orbit structure, compare Fig. 1�c� with Fig. 1�a�.
This is the classical fingerprint in the approximate doubling
of the HB for xc=� /2 �see previous section and Fig. 3�.

The hyperbolic fixed points of M4 form a periodic array
connected by the stochastic web, see Fig. 1. As shown in
Ref. �23�, the width of the web for small K is proportional to
exp�−�2 / ln����, where � is the largest eigenvalue of the lin-
earization of M4 at a hyperbolic fixed point and is given by
��1+2K cos�xc� for cos�xc��K /4 and by ��1+K2 for
xc=� /2. Thus, the latter case is characterized by a signifi-
cantly small web width and slow chaotic diffusion relative to
those for most values of xc �23�. These features may be
viewed as classical analogs of the QAR phenomenon, includ-
ing some quantum behaviors in a QAR vicinity �see Sec.
IV C and Sec. V�.

IV. QUANTUM DIFFUSION FOR GENERAL xc

In this section, we study the quantum diffusion exhibited
by wave packets evolving under the operator �3� and its
effective-Hamiltonian approximations.

A. General quantum evolution and periodic wave packets

A general wave packet 
�� for the original 2D problem
�1� can be naturally expressed in a representation based on
the two degrees of freedom �conjugate pairs� �û , v̂� and
�x̂c , ŷc�, for example, in the �u ,xc� representation, u ,xc
��
=��u ,xc�. The time evolution of ��u ,xc� can be decom-
posed into the independent evolutions for the separate, con-
served xc values,

��u,xc;t� = Ût�xc���u,xc� , �10�

t being the integer time index. We show in the Appendix
�Sec. A 3� that the quantum dynamics �10� can be fully re-
produced from that of wave packets on a cylindrical phase
space, 0u�2�, −��v��, with ��u ,xc� 2�-periodic in
u:

��u,xc� = �
n=−�

�

��n,xc�exp�inu� . �11�

Here the Fourier coefficients ��n ,xc� give the �v ,xc� repre-
sentation of 
�� on the cylinder, with v quantized in units of
	, v=n	. The quantum evolution of the wave packet �11� in
the �n ,xc� representation,

��n,xc;t� = Ût�xc���n,xc� , �12�

can be easily calculated as in the kicked-rotor case �3�, by
using a fast Fourier transform to switch from the position �u�
to the momentum �v=n	� representation �and vice versa�
before the application of each factor in Eq. �3�. The spread-
ing of the wave packet �12� along the cylinder at fixed xc is
measured by the expectation value v̂2�t of v̂2 in ��n ,xc ; t�:

v̂2�t =
	2

N�xc�
�

n=−�

�

n2
��n,xc;t�
2, N�xc� = �
n=−�

�


��n,xc�
2.

�13�

The expectation value of v̂2 in the original 2D wave packet
��n ,xc ; t� �both n and xc are variables� is given by

v̂2�t = 	2 �
n=−�

�

n2� 
��n,xc;t�
2dxc, �14�

where normalization of � over �n ,xc� is assumed,
�N�xc�dxc=1. We also show in the Appendix �Sec. A 3� that
our main results below concerning v̂2�t can be extended to
the expectation value �2�û2+ v̂2� /2�t of the kinetic energy in
an arbitrary wave packet �10�. Thus, for convenience and
without loss of generality, we shall restrict our attention to
periodic wave packets �11� and to the expectation values �13�
and �14�.

B. Quantum diffusion at fixed xc and global quantum
diffusion

We have seen in Sec. II that if � is sufficiently small, the

dominant term in the expansion �5� of Ĥeff�xc� for most val-
ues of xc, including xc=� /2, is a Harper Hamiltonian. It is
known �8,9� that for irrational 	 / �2�� the latter Hamiltonian
exhibits a fractal spectrum and, asymptotically in time, an
approximate quantum diffusion of the second moment of a
wave packet. Therefore, we can expect a similar behavior of

v̂2�t under Û�xc�=exp�−i�Ĥeff�xc�� for irrational 	 / �2�� and
sufficiently large t: v̂2�t�2D�xc�t, where D�xc� is the diffu-
sion coefficient at fixed xc.

As an illustration, let us choose the initial wave packet
�11� as a periodized coherent state centered on some
xc-dependent point �ū , v̄�,
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��u,xc� = ��	�−1/4 �
m=−�

�

exp�i
v̄�xc��u − 2�m�

	

−
�u − 2�m − ū�xc��2

2	
� . �15�

For sufficiently small 	, a classical quantity analogous to the
expectation value v̂2�t in the wave packet �15� is the average
vt

2� of vt
2 over an ensemble of initial conditions �u0 ,v0� uni-

formly distributed in a disk centered on �ū , v̄� and of radius
�2	; �ut ,vt� is the tth iterate of �u0 ,v0� under the map M4

�see Sec. III�. Figure 4 shows log-log plots of v̂2�t and vt
2�

for 	 / �2��= �51+ ��5−1� /2�−1, K=0.157, and 0� t105 in
the three cases of xc considered in Figs. 1 and 2; in each case,
�ū , v̄� was chosen as a hyperbolic fixed point of the corre-
sponding map M4. We see that v̂2�t and vt

2� essentially co-
incide up to some time t= t*�xc�, after which vt

2� stops
spreading and there occurs a crossover of v̂2�t to an approxi-
mate quantum diffusion, v̂2�t�2D�xc�t. In the case of xc

=� /2, this diffusion is shown more clearly by the normal
plot of v̂2�t in the inset of Fig. 4.

These results can be understood as follows. The irrational
value of 	 / �2�� chosen above represents a semiclassical re-
gime in which h=2�	 is small relative to the area 4�2 of a
unit cell but large relative to the width �exp�−�2 / ln���� of
the stochastic web for K=0.157 �see classical details in Sec.
III�. Thus, classical chaos leaves almost no fingerprints in the
quantum properties which should then resemble those of the
integrable approximation of the system given by the effective
Hamiltonian Heff�xc�, with the stochastic web replaced by its
separatrix “skeleton” �21,23�. A classical ensemble of width
��2	 centered on a hyperbolic fixed point will lie mostly in
the stable regions within the unit cells and will spread to its
maximal extent �of the order of the size of one unit cell� in a
time t= t*�xc� roughly proportional to ln�1/	� / ln���xc��; this
agrees with numerical estimates of t*�xc� in all cases consid-
ered, including those shown in Fig. 4. The quantum wave
packet, however, will continue to spread due to tunneling

between neighboring unit cells, leading to quantum diffusion
�8,9�.

Assuming the asymptotic quantum-diffusion behavior of
v̂2�t, v̂2�t�2D�xc�t, to hold approximately for all xc, one
finds from Eqs. �13� and �14� that the 2D wave packet �12�
can be characterized by a more realistic quantity, its global

diffusion coefficient D̄, given by a weighted average of D�xc�
over xc:

v̂2�t � 2D̄t, D̄ =� N�xc�D�xc�dxc, �16�

where N�xc� is defined in Eq. �13�. The global diffusion �16�
will be briefly considered at the end of this section.

C. xc dependence of the quantum-diffusion coefficient
for simple wave packets

We now consider the xc dependence of the quantum-
diffusion coefficient D. It is clear from Eq. �12� that this

dependence is generally due to that of both Û�xc� and the
initial wave packet ��n ,xc�. For simplicity, we shall restrict
ourselves from now on to the class of wave packets for
which one has a separation of the �n ,xc� variables, ��n ,xc�
=��xc���n� ���xc� and ��n� are assumed to be normalized�.
Then, ��n ,xc ; t�=��xc�Ût�xc���n�, so that v̂2�t in Eq. �13� is
independent of ��xc� and the xc dependence of v̂2�t for fixed

��n� is completely due to that of Û�xc�. This allows one to
derive an approximate formula for D�xc� in the case of
2
cos�xc� /�
�1. In this case, which covers most values of xc,

the effective Hamiltonian Ĥeff� Ĥ0, where Ĥ0 is given by
Eq. �6�. The tth power of the approximate evolution operator

Û0=exp�−i�Ĥ0� can be written as follows:

Û0
t �xc� = exp�2iK cos�xc�t�cos�û� + cos�v̂��/	� . �17�

Relation �17� implies that the wave packet ��n ,xc ; t�
= Û0

t �xc���n� depends on K , xc, and t only through the com-
bination K cos�xc�t. Thus, if one assumes an asymptotic
quantum-diffusive behavior, v̂2�t�2D�xc�t, accurately de-

scribed by Û0 , D�xc� must be approximately linear in
K cos�xc�:

D�xc� � 2DH
�±�K cos�xc�, 2
cos�xc�/�
 � 1. �18�

Here the proportionality constants DH
�+� and DH

�−� are associ-
ated with the xc intervals where cos�xc�
0 and cos�xc��0,
respectively; assuming that K
0 for definiteness, one has
DH

�+�
0 and DH
�−��0 since D�xc�
0. The constants DH

�+� and

DH

�−�
 are just the diffusion coefficients for v̂2�t under the

standard Harper evolution operator ÛH=exp�i�cos�û�
+cos�v̂�� /	� and its inverse ÛH

−1, respectively. For general
��n�, DH

�+�� 
DH
�−�
. However, if ��n� satisfies some symmetry

properties, e.g., its u representation is given by the right-hand
side of Eq. �15� with ū a multiple of � �as in the example
below�, one can show that DH

�+�= 
DH
�−�
 �see Appendix, Sec. A

4�. Formula �18� can then be rewritten as D�xc�

FIG. 4. Solid lines: v̂2�t for 	 / �2��= �51+ ��5−1� /2�−1, K
=0.157, and xc=0 �upper line�, xc=1.47 �middle line�, xc=� /2
�lower line�. Dashed lines: corresponding classical quantity vt

2� for
the same values of xc �see text for more details�. For the sake of
visibility, the lines for xc=� /2 were shifted below by multiplying
both v̂2�t and vt

2� by 0.019 75. The inset shows the normal plot of
v̂2�t for xc=� /2. The values of 	 and K above were used also to
obtain the results in Figs. 5 and 6.
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�2DHK
cos�xc�
 with the same constant DH for all xc satis-
fying 2
cos�xc� /�
�1.

As a check of formula �18�, we have calculated D�xc� for
	 / �2��= �51+ ��5−1� /2�−1, K=0.157, and xc=k� /40, k
=0,1 ,… ,18 by a linear fit to v̂2�t �0� t104�, evolving

under the exact operator Û�xc�. The u representation of the
initial wave packet ��n� is given by the right-hand side of
Eq. �15� with �ū , v̄�= �� ,0�, a hyperbolic fixed point for xc

=0 �see Fig. 1�a��. The results, shown in Fig. 5, agree satis-
factorily with a least-square fit of the function �18� to the
data.

Consider now the case of xc=� /2. From the fact that

Ĥeff�� /2���Ĥ1�� /2�=O�K�, one expects, using arguments
similar to those leading to formula �18�, that D�� /2� should
be approximately quadratic in K. In Table I, we present re-
sults concerning the K dependence of D�0� /K and
D�� /2� /K2. The values of D�0� and D�� /2� were calculated
by a linear fit to v̂2�t �0� t104 for xc=0 and 0� t105 for
xc=� /2�, evolving under the exact operator �3�; for both xc
=0 and xc=� /2, the initial wave packet is given by the right-
hand side of Eq. �15� with �ū , v̄� chosen as a hyperbolic fixed
point of the corresponding map M4. The results for D�0� /K
agree very well with the approximate linearity in K predicted
by formula �18�. On the other hand, D�� /2� appears to de-
crease faster than K2 as K decreases, which may indicate that

high-order corrections to Ĥeff for xc=� /2 have a stronger
impact than for xc=0. In any case, Table I provides evidence
that as K decreases D�� /2� becomes significantly smaller
than typical values of D�xc�.

We end this section by a brief consideration of the global
quantum diffusion �16� in the case of the initial wave packets
��n ,xc�=��xc���n�. For such a wave packet, formula �18�
can be used to calculate approximately the global diffusion

coefficient D̄, with N�xc�= 
��xc�
2 in Eqs. �13� and �16�.
Choosing N�xc� uniform, N�xc�=2/�, for 0xc�� /2 and
vanishing outside this interval, one finds from Eqs. �16� and

�18� that D̄�4DH
�+�K /�. Much smaller values of D̄ are ob-

tained if N�xc� is strongly localized around xc=� /2. Figure 6
shows the time evolution of v̂2�t, given by a uniform aver-
age of v̂2�t over xc=k� /40, k=0,1 ,… ,18, where v̂2�t for
each of these xc values was calculated as specified above for
obtaining the results in Fig. 5. We also show in Fig. 6 the
functions v̂2�t for xc=0 �k=0� and xc=2� /5 �k=16�. As
expected, averaging over xc removes from v̂2�t much of the
fluctuations exhibited by v̂2�t at fixed xc.

V. SUMMARY AND CONCLUSIONS

Our study of the quantized system �2� for general xc has
revealed the significant impact of the transition xc→� /2 to a
QAR vicinity on the spectral and quantum-diffusion proper-
ties in a weak-chaos �small K� regime. In this transition, the
dominant term in the effective-Hamiltonian expansion �5�
changes from Ĥ0 to �Ĥ1 in a xc window of width �� around

xc=� /2, where Ĥ0 vanishes. Both Ĥ0�xc� and Ĥ1�� /2� are

Harper Hamiltonians, but Ĥ1�� /2� is periodic in phase space

with a unit cell half the size of that of Ĥ0�xc�. As a conse-
quence, the HB for xc=� /2 is essentially a perturbed
doubled version of the standard HB for the Harper model
�see Fig. 3�. Thus, as xc is varied from 0 to � /2, there must
occur strong changes in the HB structure and the spectral
properties �see Fig. 2 and the end of Sec. II�, reflecting cor-
responding changes in the classical web structure due to bi-
furcations �23� �see Fig. 1�. A more detailed investigation of
the fingerprints of these bifurcations in the quantum proper-
ties is planned for a future work.

The quantum diffusion of wave packets for the system �2�
was characterized by a coefficient D�xc� at fixed xc and by a

global coefficient D̄. Formula �18� for D�xc� was derived on

the basis of the approximate effective Hamiltonian Ĥ0�xc�
and it agrees reasonably well with numerical results for suf-
ficiently small K �see Fig. 5 and Table I�. This formula and
numerical evidence indicate that D�xc� is strongly reduced as
xc→� /2: D�� /2� appears to be not larger than O��� relative
to typical values of D�xc�. This phenomenon is of a purely
quantum nature but it is analogous to the relatively slow

FIG. 5. Diamonds: numerical results for the quantum-diffusion
coefficient D�xc� �see text for more details�. Solid line: least-square
fit of formula �18� to the numerical data, DH

�+�=0.224.

TABLE I. D�0� /K and D�� /2� /K2 for several values of K.

K 0.15 0.157 0.17 0.18 0.19 0.2

D�0� /K 0.458 0.459 0.461 0.461 0.460 0.459

D�� /2� /K2 0.219 0.226 0.237 0.243 0.244 0.243

FIG. 6. Middle line: global quantum diffusion of v̂2�t, given by
a uniform average of v̂2�t over xc=k� /40, k=0,1 ,… ,18 �see text
for more details�. The upper and lower lines correspond to v̂2�t for
xc=0 �k=0� and xc=2� /5 �k=16�, respectively.
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classical chaotic diffusion for xc=� /2 in a weak-chaos re-
gime �23�. An interesting but apparently difficult problem is
to obtain a refined formula for D�xc�, extending the zero-
order result �18� to the small xc window around xc=� /2
where higher-order terms in the expansion �5� must be taken
into account.

The strong variation of D�xc� with xc is exhibited in prac-
tice by the global quantum diffusion of a 2D wave packet for
all xc. If the potential cos�x� in Eq. �1� is replaced by cos�x
−��, where � is an adjustable phase, one can “filter” the
wave-packet component associated with an arbitrary value of
xc��+� /2 as the component having the smallest quantum-
diffusion rate. The new quantum phenomena predicted by the
realistic, general-xc approach to �1� may be observed in pos-
sible experimental realizations of this system.
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APPENDIX

1. Exact relation between system (2) and KHM
and relevant xc range

The evolution operator �3� for the system �2� in

the case of �=� /2 is equivalent to Û��xc�
=exp�−i�W�v̂��Û�xc�exp�i�W�v̂��, where W�v�=−cos�xc

−v�. One has

Û��xc� = ÛKHM
�+� ÛKHM

�−� , �A1�

where

ÛKHM
�±� = exp�− i�W�± v̂��exp�− i�W�± û��

is the one-period evolution operator for the generalized
KHM �16,17� with Hamiltonian H=W�±v�
+W�±u��s=−�

� ��t /K−s�. This reduces to the usual KHM
Hamiltonian, with W�v�=cos�v� �up to a sign�, only for xc

=0, �. Then, ÛKHM
�+� = ÛKHM

�−� = ÛKHM and the exact relation

Û��xc�= ÛKHM
2 follows from Eq. �A1�.

The evolution operator �3� satisfies also the similarity re-
lations

Û�xc + �� = D̂Û�xc�D̂−1, Û�− xc� = ŜÛ�xc�Ŝ−1, �A2�

where

D̂ = exp��iû/	�exp��iv̂/	� ,

Ŝ = exp�− i� cos�xc + v̂��exp�− i� cos�xc − û�� .

Since Û�xc� is 2�-periodic in xc, relations �A2� imply that
the range of xc can be restricted to �0,� /2� without loss of
generality.

2. Quasienergy band spectrum and some of its basic
properties

Using relation �A1�, the results in Ref. �17� concerning
the quasienergy �QE� band spectra of generalized KHMs can

be straightforwardly extended to the operator Û��xc�, which

is equivalent to the evolution operator Û�xc� in Eq. �3� and

thus has the same QE spectra as those of Û�xc�. For 	

=2�q / p �q and p are coprime integers�, Û��xc� and

the phase-space translations D̂1=exp�2�iû /	� and D̂2

=exp�ipv̂� form a complete set of commuting operators.
Their simultaneous eigenstates are given, in the v represen-
tation, by

�b,w,xc
�v� = �

m=0

p−1

�b�m;w;xc� �
n=−�

�

exp�in�w1 + m	�/q�

���v − w2 + 2�n/p� .

Here the index b=1,… , p labels p QE bands; w= �w1 ,w2� is
a Bloch wave vector spanning a band and ranging in the
“Brillouin zone” 0w1�	, 0w2�2� / p; and
��b�m ;w ;xc��m=0

p−1 , b=1,… , p, are p independent vectors of

coefficients. The corresponding eigenvalues of Û��xc� are
exp�−i�Eb�w ;xc��, where Eb�w ;xc� is a QE band. It is easy

to see that Û��xc� commutes with D̂0=exp�2�iv̂ /	� and also

that D̂0
q= D̂2. Then, the q states �b,w,xc

�d� = D̂0
d�b,w,xc

, d

=0,… ,q−1, are different eigenstates of Û��xc�, all associ-
ated with the same eigenvalue. Therefore, each band is
q-fold degenerate.

The p vectors �exp�imw2��b�m ;w ;xc��m=0
p−1 , b=1,… , p,

are the eigenvectors of a p� p w-dependent matrix
M�w ;xc�,

M�w;xc� = M�+��w;xc�M�−��w;xc� , �A3�

where M�±��w ;xc� are matrices corresponding to the opera-

tors ÛKHM
�±� in relation �A1� and whose elements can be ex-

plicitly written using the results in Ref. �17�:

Mm,m�
�±� �w;xc� = exp�i� cos�xc � w1 � m�	��

� �
g=−�

�

J��gp+m�−m���,xc�exp�igpw2� ,

�A4�

where m ,m�=0,… , p−1 and Jm�� ,xc�
= �2��−1�0

2�exp�im�xc−u�+ i� cos�u��du. It is clear from Eq.
�A4� that the matrix �A3�, and therefore the QE spectrum, is
2�-periodic in 	 at fixed �. In addition, the matrix �A3� is
invariant under the “reflection” 	→2�−	 at fixed � pro-
vided xc and w1 satisfy the two relations

xc � w1 = − xc ± w1 + 2�j± �A5�

for some integers j±. The solution of Eq. �A5� for xc is xc
=��j++ j−� /2. Since xc can be restricted to �0,� /2� �see Sec.
A 1�, we see that the QE spectrum is invariant under
	→2�−	 at fixed � only if xc=0, � /2.

GENERAL APPROACH TO THE QUANTUM KICKED … PHYSICAL REVIEW E 72, 046205 �2005�

046205-7



3. General quantum evolution in terms of periodic-wave-
packet evolutions

Following Ref. �4�, let us express the momentum v in the
form v= �n+��	, where n and � are, respectively, the integer
and fractional parts of v /	. The �v ,xc� representation of a
general 2D wave packet 
�� for the system �1� will be then
denoted by ��n+� ,xc�. From the relation between the �u ,xc�
and the �v ,xc� representations, one finds that

��u,xc� =
1

	
� ��v/	,xc�exp�iuv/	�dv

= �
0

1

d� exp�i�u����u,xc� , �A6�

where ��u ,xc� is the �u ,xc� representation of 
�� and

���u,xc� = �
n=−�

�

��n + �,xc�exp�inu� . �A7�

Clearly, ���u ,xc� is 2�-periodic in u, so that relation �A6�
provides the decomposition of ��u ,xc� into Bloch functions
exp�i�u����u ,xc� with quasimomentum �. Now, since the

evolution operator Û�û , v̂ ;xc� in Eq. �3� is 2�-periodic in
both û and v̂, its application to such a Bloch function must
“conserve” �; in fact, it is easy to see that

Û�û, v̂;xc��exp�i�u����u,xc�� = exp�i�u�����u,xc� ,

�A8�

where

����u,xc� = Û�û = u, v̂ = 	� − i	
d

du
;xc	���u,xc� .

�A9�

The right-hand side of Eq. �A8� is also a Bloch function with
quasimomentum �, since ����u ,xc� is 2�-periodic in u due to
Eq. �A9�. Relation �A6� then implies that the evolution of a

general wave packet ��u ,xc� under Û�xc� can be decom-
posed or “fibrated” �4� into independent evolutions at fixed
�,

Û�xc���u,xc� = �
0

1

d� exp�i�u�Û��xc����u,xc� ,

�A10�

where Û��xc� is the operator appearing on the right-hand side
of Eq. �A9�. Relation �A10� shows that the quantum dynam-
ics �10� can be fully reproduced from that of periodic wave

packets �A7� under the corresponding operators Û��xc�.
We denote by ��v /	 ,xc ; t�= Ût�xc���v /	 ,xc� the wave

packet at time t in the �v ,xc� representation and restrict our
attention, as in Sec. IV C, to the case in which one has a
separation of the �v ,xc� variables, ��v /	 ,xc�=��xc���v /	�,
with normalized � and �. The expectation value v̂2�t of v̂2 in
��v /	 ,xc ; t� can then be expressed as follows:

v̂2�t =� v2
��v/	,xc;t�
2dv = �
0

1

d�N�v̂2��,t,

�A11�

where ��v /	 ,xc ; t�= Ût�xc���v /	�,

v̂2��,t =
	2

N�
�

n=−�

�

�n + ��2
��n + �,xc;t�
2,

N� = �
n=−�

�


��n + ��
2, �A12�

and ��n+� ,xc ; t�= Û�
t �xc���n+��. We notice that the expres-

sions �A11� and �A12� are independent of ��xc� and their xc

dependence is completely due to that of Û�xc� or Û��xc�.
Fully analogous expressions can be written for the expecta-
tion values û2�t and û2��,t, where � is the quasimomentum
characterizing Bloch functions 2�-quasiperiodic in the v di-
rection. Let us now assume approximate quantum diffusions
of v̂2��,t and û2��,t for all �� ,xc�, �� ,xc�, and for sufficiently
large t, i.e., v̂2��,t�2D��xc�t and û2��,t�2Du,��xc�t. The
expectation value of the kinetic energy then exhibits the ap-
proximate diffusive behavior �2�û2+ v̂2� /2�t�2DKE�xc�t,
where

DKE�xc� = ��2/2���
0

1

d�N�D��xc� + �
0

1

d�Nu,�Du,��xc�� .

Following the same reasoning as in the case of �=0 consid-
ered in Sec. IV C, the diffusion coefficients D��xc� , Du,��xc�,
and DKE�xc� for sufficiently small K are expected to satisfy
approximately formula �18� with DH

�±� replaced by corre-
sponding proportionality constants DH,�

�±� , DH,u,�
�±� , and

DH,KE
�±� = ��2/2���

0

1

d�N�DH,�
�±� + �

0

1

d�Nu,�DH,u,�
�±� � .

4. Cases in which DH,�
„+… = �DH,�

„−… �

We show here that there are cases in which DH,�
�+� = 
DH,�

�−� 

�similarly, one can show that there are cases in which
DH,u,�

�+� = 
DH,u,�
�−� 
�. The constants DH,�

�+� and 
DH,�
�−� 
 are the diffu-

sion coefficients for v̂2��,t under the standard Harper evolu-

tion operator ÛH=exp�i�cos�û�+cos�v̂�� /	� and its inverse

ÛH
−1, respectively. In the u representation,

ÛH
t �u� = exp� it

	
�cos�u� + cos�i	

d

du
	�� . �A13�

Consider the Bloch state ���u�=exp�i�u���u�, where ��u�
is given by the right-hand side of Eq. �15�, and define the
variable u�=2ū−u. It is easy to see that
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���u� = C��
*�u�� , �A14�

where C=exp�2iū�v̄+�� /	� is a constant phase factor.
Choosing now ū= j�, j integer, and using relations �A13�
and �A14�, we find that

���u;− t� � ÛH
−t�u����u� = C�ÛH

t �u�����u���* = C��
*�u�;t� .

�A15�

It follows from relation �A15� that

v̂2��,−t = − 	2�
0

2�

��
*�u;− t�

d2

du2���u;− t�du

= v̂2��,t
* = v̂2��,t, �A16�

since v̂2��,t must be real �and positive�. The equality DH,�
�+�

= 
DH,�
�−� 
 is an immediate consequence of relation �A16�.
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